Dynamic Stability of the Three-Dimensional Axisymmetric Navier-Stokes Equations with Swirl

نویسندگان

  • THOMAS Y. HOU
  • CONGMING LI
چکیده

In this paper, we study the dynamic stability of the three-dimensional axisymmetric Navier-Stokes Equations with swirl. To this purpose, we propose a new one-dimensional model that approximates the Navier-Stokes equations along the symmetry axis. An important property of this one-dimensional model is that one can construct from its solutions a family of exact solutions of the threedimensionaFinal Navier-Stokes equations. The nonlinear structure of the onedimensional model has some very interesting properties. On one hand, it can lead to tremendous dynamic growth of the solution within a short time. On the other hand, it has a surprising dynamic depletion mechanism that prevents the solution from blowing up in finite time. By exploiting this special nonlinear structure, we prove the global regularity of the three-dimensional Navier-Stokes equations for a family of initial data, whose solutions can lead to large dynamic growth, but yet have global smooth solutions. c 2007 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. II. Classification of axisymmetric no-swirl solutions

We classify all (-1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south and north poles, parameterizing them as a four dimensional surface with boundary in appropriate function spaces. Then we establish smoothness properties of the solution surface in the four parameters. The smo...

متن کامل

Dynamic Stability of the 3D Axi-symmetric Navier-Stokes Equations with Swirl

In this paper, we study the dynamic stability of the 3D axisymmetric NavierStokes Equations with swirl. To this purpose, we propose a new one-dimensional (1D) model which approximates the Navier-Stokes equations along the symmetry axis. An important property of this 1D model is that one can construct from its solutions a family of exact solutions of the 3D Navier-Stokes equations. The nonlinear...

متن کامل

On the regularity of the axisymmetric solutions of the Navier-Stokes equations

Weobtain improved regularity criteria for the axisymmetricweak solutions of the three dimensional Navier-Stokes equations with nonzero swirl. In particular we prove that the integrability of single component of vorticity or velocity fields, in terms of norms with zero scaling dimension give sufficient conditions for the regularity of weak solutions. To obtain these criteria we derive new a prio...

متن کامل

Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. I. One singularity

We classify all (−1)−homogeneous axisymmetric no swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south pole, parameterize them as a two dimensional surface with boundary, and analyze their pressure profiles near the north pole. Then we prove that there is a curve of (−1)−homogeneous axisymmetric solutions with...

متن کامل

Global Regularity of the 3D Axi-symmetric Navier-Stokes Equations with Anisotropic Data

In this paper, we study the 3D axisymmetric Navier-Stokes Equations with swirl. We prove the global regularity of the 3D Navier-Stokes equations for a family of large anisotropic initial data. Moreover, we obtain a global bound of the solution in terms of its initial data in some Lp norm. Our results also reveal some interesting dynamic growth behavior of the solution due to the interaction bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007